

New ATP Research Directions and Results

Connie Chang and Lorel Wisniewski **Supervisory Economists Economic Assessment Office**

> ATP Advisory Committee Meeting May 13, 2004

National Institute of Standards and Technology • Technology Administration • U.S. Departm

- Survey of ATP Joint Ventures
- Hot-Spot Cluster Analysis
- Improving Our Infrastructure
- University Spinoffs

Joint Venture Survey Building on Prior Work

- Case studies (Link 1997, Printed Wiring Boards)
- Economic Studies (Sakakibara & Branstetter 2002, Patent Activity; Darby, Zucker, Wang 2002, Project Structure & Outcomes
- Business Reporting System

Dyer & Powell 2001, Determinants of Success in ATP Funded Joint Ventures

NIST

Joint Venture Survey

- ATP creates R&D collaboration that would not otherwise occur
- >92% report the JV would not have formed without ATP
- >81% say ATP ensures commitment
- > 64% say ATP fosters trust & cooperation

National Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

Joint Venture Survey

- ATP JV projects represent new R&D directions
- >77% say project reflects new direction for their company
- >83% say project reflects new R&D direction for the industry

Joint Venture Survey

- ATP JVs have university connections
- > 68% report project is based on university research
- > 63% report project involves interaction with universities

lational Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

Joint Venture Survey

- ATP JVs are more ambitious & more technically difficult than typical R&D
- > 82% report the JV project is more ambitious than typical R&D in their industry
- > 70% report the JV project involves greater technical difficulty than typical R&D in their company

Joint Venture Survey

- ATP JV projects result in significant commercialization
- > 56% of projects report commercial success through:
 - > Product revenues (48%)
 - > Cost savings (23%)
 - > Licensing revenues (12%)
- > 80% of projects report additional investment (beyond cost share)

National Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

Joint Venture Survey Future Work

- Fact sheet series
- Staff research paper
- Dyer et al economic study on Joint Venture Survey analysis
- Incorporate Joint Venture study themes into Business Reporting System

Hot-Spot Cluster Analysis of High Impact Patents

Contractor: CHI Research, Inc. (9/02-6/04) Purpose

- Motivating Questions: What is the regional impact of ATP? Can we better organize our outreach?
- **Hot-Spot Analysis** is a powerful tool that maps out current areas of innovative activity off the beaten path. This tool:
 - Examines clusters of patents that are highly cited by recently issued patents.
 - Identifies a subset of clusters that are developing early stage technologies most relevant to ATP.
 - Analyzes the regional, organizational, and collaborative characteristics of these clusters.

National Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

Hot-Spot Cluster Project Background

- Hot-Spot Analysis provides a filter on recent patents by focusing on the 20% of recent patents that are likely to have impact in the future.
 - Using recent patents with no filtering mechanism is problematic b/c there are
 >300,000 patents issued in the last 2 years, and most of them may have little value.
 - Need a filter b/c identifying early-stage, highrisk technologies is difficult.

Hot-Spot Cluster Project Background (II)

- **Hot-Spot patents** can be 1 year old or 25 years old; it does not matter as long as they are highly cited by recent patents.
- High citation is correlated with various measures of impact and quality.
- Very few patents receive many citations.
 Ones that do represent key technologies that have led to many subsequent innovations.

lational Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

Hot-Spot Cluster Project Hot Spot Definition

- A **Hot-Spot Patent** has to have 10+ recent citations, and the proportion of recent cites to total cites is proportional to its age.
 - Old patents have to have 25% of their cites as recent to be hot spots; new patents have to have a higher proportion.

Hot-Spot Cluster Project Next Generation Definition

- The **Next Generation** (NG) are the current patents building on the hot spot technology (the "citing patents")
 - Patents in a next generation group reference one or more patents in the corresponding hot spot cluster.
 - NG represents lots of patent activity around the same hot technology, usually by many companies.
 - NG are often applications developing around a more basic technology.
 - NG clusters that contain ATP-related patents have certain identifiable characteristics (high public sector participation, high science linkage, and multiple prior art references).

National Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

Hot-Spot Cluster Project

Two Period Examination - Trend Analysis

- To test robustness of results, two periods of time were examined:
- 2002 Time Period
 - 16,451 Hot-Spot Patents.
 - 66,216 Next-Generation Patents.
 - 5.455 Next Generation Clusters.
- 1998 Time Period
 - 10,038 Hot-Spot Patents.
 - 43,223 Next-Generation Patents.
 - 2,071 Next Generation Clusters.

Hot Spot Cluster Project Results

Only 20% of all Patents make it to the Next Generation Cluster, but ...

47% of ATP-Related Patents are found in the 2002 Next Generation

44% of ATP-Related Patents are found in the 1998 Next Generation

Conclusion: There is a higher than expected association between patents based on ATP projects and Next Generation Clusters.

Hot Spot Cluster Project Results (II)

Next Generation Clusters w/ATP Patents Have a High Degree of Public Sector Participation -- suggests high risk, early stage research

Next Generation Clusters w/ATP Patents Have Twice as Many Science Links as Expected -- suggests high risk, early stage research

Next Generation Clusters w/ATP Patents Have a High Degree of Multiple Prior Art References -- suggests broadly, enabling research

Hot Spot Cluster Project total) Results (III)

Top 50 Metropolitan Areas (320 total) in terms of Next Generation Patents

· · · · · · · · · · · · · · · · · · ·		Rank and Percent of Total							
Metropolitan Area	ATP Applications		ATP Awards		Hot-Spot Patents		Next-Gen Patents		
San Francisco-Oakland-San Jose, CA CMSA	1 (9.7%)		1 (10.7%)		1 (17.6%)		1 (17.5%)		
New York-Northern New Jersey-Long Island, NY-NJ-CT-PA CMSA	4	(6.2%)	3	(6.0%)	2	(9.5%)	2	(7.8%	
Boston-Worcester-Lawrence-Lowell-Brockton, MA-NH NECMA	2	(7.2%)	2	(7.9%)	3	(5.5%)	3	(4.8%	
Los Angeles-Riverside-Orange County, CA CMSA	5	(5.0%)	6	(3.5%)	4	(4.2%)	4	(4.2%	
Boise City, ID MSA	107	(0.1%)	141	(0.0%)	10	(2.4%)	5	(3.5%	
Minneapolis-St. Paul, MN-WI MSA	12	(1.9%)	9	(2.6%)	8	(2.6%)	6	(2.8%	
Chicago-Gary-Kenosha, IL-IN-WI CMSA	9	(2.8%)	8	(2.6%)	5	(2.9%)	7	(2.7%	
Austin-San Marcos, TX MSA	21	(1.1%)	18	(1.3%)	9	(2.4%)	8	(2.7%	
San Diego, CA MSA	7	(3.1%)	10	(2.5%)	6	(2.8%)	9	(2.5%	
Dallas-Fort Worth, TX CMSA	18	(1.4%)	16	(1.9%)	11	(2.2%)	10	(2.4%	
Detroit-Ann Arbor-Flint, MI CMSA	6	(3.7%)	4	(5.1%)	12	(2.1%)	11	(2.2%	
Washington-Baltimore, DC-MD-VA-WV CMSA	3	(6.3%)	5	(4.4%)	7	(2.7%)	12	(2.1%	
Seattle-Tacoma-Bremerton, WA CMSA	19	(1.3%)	22	(1.0%)	14	(1.9%)	13	(2.1%	
Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD CMSA	8	(2.8%)	10	(2.5%)	13	(2.1%)	14	(1.9%	
Houston-Galveston-Brazoria, TX CMSA	17	(1.5%)	19	(1.2%)	15	(1.7%)	15	(1.7%	
Portland-Salem, OR-WA CMSA	24	(0.7%)	19	(1.2%)	18	(1.4%)	16	(1.6%	
Raleigh-Durham-Chapel Hill, NC MSA	22	(1.1%)	23	(0.9%)	21	(1.2%)	17	(1.69	
New Haven-Bridgeport-Stamford-Waterbury-Danbury, CT NECMA	20	(1.2%)	16	(1.9%)	16	(1.6%)	18	(1.5%	
Rochester, NY MSA	29	(0.7%)	23	(0.9%)	17	(1.5%)	19	(1.5%	
Atlanta, GA MSA	13	(1.7%)	21	(1.1%)	20	(1.2%)	20	(1.39	
Phoenix-Mesa, AZ MSA	27	(0.7%)	38	(0.5%)	22	(1.1%)	21	(1.29	
Denver-Boulder-Greeley, CO CMSA	11	(2.0%)	14	(2.3%)	19	(1.3%)	22	(1.2%	
Burlington, VT NECMA	164	(0.0%)	141	(0.0%)	35	(0.5%)	23	(0.98	
Cincinnati-Hamilton, OH-KY-IN CMSA	28	(0.7%)	28	(0.8%)	25	(0.7%)	24	(0.9	
Cleveland-Akron, OH CMSA	15	(1.6%)	15	(2.0%)	24	(0.9%)	25	(0.8	

tional Institute of Standards and Technology • Technology Administration • U.S. Department of Commercial

Hot Spot Cluster Project Results (III, cont'd)

Summary of Previous Table

- Boise region is ranked 10th in Hot-Spot Patents and 5th in Next Generation Clusters, but ranked 107th in ATP applications and 141st in ATP awards.
 - Interesting things are going on in Boise, but ATP is not a presence.
 Patents are mainly from Micron Technologies and HP.
 - Implication of Boise being ranked 5th in Next Generation clusters is that it has an even larger percentage of the very recent developments.
- Similar phenomenon in Burlington VT. Ranked 35th in Hot-Spot Patents and 23rd in Next Generation Clusters, but ranked 164th in ATP applications and 141st in ATP awards.
 - Few ATP applications come from here. Patents are largely driven by an IBM lab.

Hot Spot Cluster Project Results (IV)

Other Results

- Except for a few outliers, existing ATP outreach is hitting the main areas. Pretty good correlation between Hot-Spot regions and ATP applications and awards.
 - San Francisco-Oakland-San Jose, CA is ranked first in ATP apps, ATP awards, Hot-Spot Patents, and Next Generation clusters.
 - Top 10 regions contain 52% of Hot Spots, 43% of ATP apps.
 - Top 20 regions contain 70% of Hot Spots, 60% of ATP apps.
 - Top 30 regions contain 78% of Hot Spots, 69% of ATP apps.
- Some regions are more successful at winning ATP awards than others. Among regions with 10+ ATP awards:
 - Albany-Schenectady-Troy, NY has applied 120 times and won awards 30% of the time.
 - San Francisco-Oakland-San Jose, CA, and Detroit-Ann Arbor-Flint, MI have won awards 18% and 22% of the time.
 - Atlanta, Los Angeles, and Washington, are less successful with only an 11% hit rate, but within the average success rate of 10-12%.

lational Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

Hot Spot Cluster Project Implications and Next Steps

- Association between ATP-related patents and Next Generation Clusters was found and confirmed for two distinct time periods.
- This finding suggests that ATP is funding technology that is closely linked to high-impact technology.
- With higher than expected participation of ATPrelated patents in Next Generation Clusters, ATP dollars are likely to have a broad impact beyond individual award recipients.

Hot Spot Cluster Project Implications and Next Steps (II)

- Project's ultimate goal
 - Of the 300,000+ recently issued patents, identify those that are more closely associated with high risk, early stage technology.
- Next Steps
 - Identify Top 300 Next Generation Clusters based on key characteristics.
 - Down-select to 100 relevant ones and provide general statistics.
 - Narrow down to 60 NG clusters to analyze in detail by geography, inventor, and technology theme.

National Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

Visualizing Hot Spots

"Understanding Regional Innovative Capacity" Project (10/03-9/05) Visualization of the 2002 Hot-Spot Patents

NST

University Spinoffs

Research Question:

- To what extent do public policies and institutions contribute to the creation of *entrepreneurship capital*?
- To what extent do regional factors shape the formation and direction of entrepreneurship centers?

National Institute of Standards and Technology • Technology Administration • U.S. Department of Commercial

University Spinoffs

Methodology:

- Interviews with two type of organizations and associated personnel/entrepreneurs
 - Tech-based start ups with university ties
 - State and local institutions (often incubators associated with universities) assisting in entrepreneurial development
 - Indianapolis, Madison, Cleveland, Atlanta, and San Diego

